
Securing PHP
Applications

By: Ilia Alshanetsky

 2

What is Security?
 Security is a measurement, not a characteristic.

 It’s is also an growing problem that requires an
continually evolving solution.
 A good measure of secure application is it’s ability to

predict and prevent future security problems, before
someone devises an exploit.

 As far as application design goes, security must
be considered at all times; initial spec,
implementation, testing and even maintenance.

 3

PHP & Security
 PHP keeps on growing as a language,

making headway into enterprise and
corporate markets.

 Consequently PHP applications often end
up working with sensitive data.
 Unauthorized access to this data is unacceptable.
 To prevent problems a secure design is needed.

 4

Accessing Input Data
 As of PHP 4.1, there are a series of super-

globals that offer very simple access to the input
data.
 $_GET – data from get requests.
 $_POST – post request data.
 $_COOKIE – cookie information.
 $_FILES – uploaded file data.
 $_SERVER – server data
 $_ENV – environment variables
 $_REQUEST – combination of GET/POST/COOKIE

 5

Register Globals
 Arguably the most common source of

vulnerabilities in PHP applications.
 Any input parameters are translated to

variables.
 ?foo=bar >> $foo = “bar”;

 No way to determine the input source.
 Prioritized sources like cookies can overwrite GET

values.
 Un-initialized variables can be “injected” via

user inputs.

 6

Register Globals
if (authenticated_user()) {

$authorized = true;
}
if ($authorized) {

include '/highly/sensitive/data.php';
}

 Because $authorized is left un-initialized if
user authentication fails, an attacker could
access privileged data by simply passing the
value via GET.

http://example.com/script.php?authorized=1

 7

Solutions To Register Globals
 Disable register_globals in PHP.ini.

 Already done by default as of PHP 4.2.0

 Code with error_reporting set to E_ALL.
 Allows you to see warnings about the use of un-

initialized variables.

 Type sensitive validation conditions.
 Because input is always a string, type sensitive

compare to a Boolean or an integer will always fail.
if ($authorized === TRUE) {

 8

Hidden Register Globals Problems

script.php?var[]=1&var[]=2

The link above will allow the attacker to inject
two values into the $var array. Worse yet PHP
provides no tools to detect such injections.

$var[] = “123”;
foreach ($var as $entry) {

make_admin($entry);
}

 9

$_REQUEST
 The $_REQUEST super-global merges data from

different input methods, like
register_globals it is vulnerable to value
collisions.

PHP.ini: variables_order = GPCS

echo $_GET['id']; // 1
echo $_COOKIE['id']; // 2
echo $_REQUEST['id']; // 2

 10

$_SERVER
 Even though the $_SERVER super-global is

populated based on data supplied by the web-
server it should not be trusted.
 User may inject data via headers

Host: <script> ...
 Some parameters contain data based on user input

REQUEST_URI, PATH_INFO, QUERY_STRING
 Can be fakes

Spoofed IP address via the use of anonymous
proxies.

 11

Numeric Value Validation
 All data passed to PHP (GET/POST/COOKIE) ends up

being a string. Using strings where integers are needed
is not only slow but also dangerous.

// integer validation
if (!empty($_GET['id'])) {
 $id = (int) $_GET['id'];
} else
 $id = 0;
// floating point number validation
if (!empty($_GET['price'])) {
 $price = (float) $_GET['price'];
} else
 $price = 0;

 Casting is a simple
and very efficient
way to ensure
variables do in fact
contain numeric
values.

 12

Validating Strings
 PHP comes with a ctype, extension that offers a very

quick mechanism for validating string content.

if (!ctype_alnum($_GET['login'])) {
 echo "Only A-Za-z0-9 are allowed.";
}
if (!ctype_alpha($_GET['captcha'])) {
 echo "Only A-Za-z are allowed.";
}
if (!ctype_xdigit($_GET['color'])) {
 echo "Only hexadecimal values are allowed";
}

 13

Path Validation
 Values passed to PHP applications are often

used to specify what file to open. This too needs
to be validated to prevent arbitrary file access.

http://example.com/script.php?path=../../etc/passwd

<?php
$fp = fopen(“/home/dir/{$_GET[‘path’]}”, “r”);
?>

 14

Path Validation
 PHP includes a basename() function that will process a

path and remove everything other then the last
component of the path, usually a file name.

<?php
$_GET[‘path’] = basename($_GET[‘path’]);

// only open a file if it exists.
if (file_exists(“/home/dir/{$_GET[‘path’]}”)) {

$fp = fopen(“/home/dir/{$_GET[‘path’]}”, “r”);
}
?>

 15

Better Path Validation
 An even better solution would hide file names

from the user all together and work with a white-
list of acceptable values.

// make white-list of templates
$tmpl = array();
foreach(glob("templates/*.tmpl") as $v) {
 $tmpl[md5($v)] = $v;
}
if (isset($tmpl[$_GET['path']]))
 $fp = fopen($tmpl[$_GET['path']], "r");

http://example.com/script.php?path=57fb06d7...

 16

magic_quotes_gpc
 PHP tries to protect you from attacks, by

automatically escaping all special characters
inside user input. (‘, “, \, \0 (NULL))
 Slows down input processing.

 We can do better using casting for integers.
 Requires 2x memory for each input element.

 May not always be available.
 Could be disabled in PHP configuration.

 Generic solution.
 Other characters may require escaping.

 17

Magic Quotes Normalization
if (get_magic_quotes_gpc()) { // check magic_quotes_gpc state
 function strip_quotes(&$var) {
 if (is_array($var)
 array_walk($var, 'strip_quotes');
 else
 $var = stripslashes($var);
 }

 // Handle GPC
 foreach (array('GET','POST','COOKIE') as $v)
 if (!empty(${"_".$v}))
 array_walk(${"_".$v}, 'strip_quotes');

// Original file names may contain escaped data as well
 if (!empty($_FILES))
 foreach ($_FILES as $k => $v) {
 $_FILES[$k]['name'] = stripslashes($v['name']);
}

 18

Recursive Functions == Crash
 While the code on the previous slide

works, it can be easily exploited, due to its
reliance on recursive functions!

<?php
$qry = str_repeat(“[]”, 1024);
$url = “http://site.com/script.php?a{$qry}=1”;
file_get_contents($url);

// run up in memory usage, followed by a prompt
crash

?>

 19

More Reliable & Faster Solution
if (get_magic_quotes_gpc()) {
 $in = array(&$_GET, &$_POST, &$_COOKIE);
 while (list($k,$v) = each($in)) {
 foreach ($v as $key => $val) {
 if (!is_array($val)) {
 $in[$k][$key] = stripslashes($val);
 continue;
 }
 $in[] =& $in[$k][$key];
 }
 }
 unset($in);
}

 20

XSS
 Cross Site Scripting (XSS) is a situation where

by attacker injects HTML code, which is then
displayed on the page without further validation.

 Can lead to embarrassment.
 Session take-over.
 Password theft.
 User tracking by 3rd parties.

 21

XSSOOPS Demo
 As you’ll see in a moment that XSS is

arguably the most common vulnerability
you’ll find on the web.

 Nearly every single web site in vulnerable
to XSS attacks.

 22

Preventing XSS
 Prevention of XSS is as simple as filtering

input data via one of the following:
 htmlspecialchars()

 Encodes ‘, “, <, >, &
 htmlentities()

 Convert anything that there is HTML entity for.
 strip_tags()

 Strips anything that resembles HTML tag.

 23

Preventing XSS
$str = strip_tags($_POST['message']);
// encode any foreign & special chars
$str = htmlentities($str);
// maintain new lines, by converting them to

echo nl2br($str);

// strip tags can be told to "keep" certain tags
$str = strip_tags($_POST['message'], '<p><i><u>');
$str = htmlentities($str);
echo nl2br($str);

 Tag allowances in strip_tags() are
dangerous, because attributes of those tags are
not being validated in any way.

 24

Tag Allowance Problems
<b style="font-size: 500px">
TAKE UP ENTIRE SCREEN

<u onError="alert(document.cookie);">
supposedly harmless text
</u>

<p style="background:
url(http://tracker.com/image.gif)">

Let's track users
</p>

 25

SQL Injection
 SQL injection is similar to XSS, in the fact

that not validated data is being used. But
in this case this data is passed to the
database.
 Arbitrary query execution

 Removal of data.
 Modification of existing values.
 Denial of service.
 Arbitrary data injection.

 26

SQL Escaping
 If database interface extension offers

dedicated escaping functions, USE THEM!
 MySQL

 mysql_escape_string()
 mysql_real_escape_string()

 PostgreSQL
 pg_escape_string()
 pg_escape_bytea()

 SQLite
 sqlite_escape_string()

 27

SQL Escaping in Practice
// undo magic_quotes_gpc to avoid double escaping
if (get_magic_quotes_gpc()) {
 $_GET['name'] = stripslashes($_GET['name'];
 $_GET['binary'] = stripslashes($_GET['binary']);
}

$name = pg_escape_string($_GET['name']);
$binary = pg_escape_bytea($_GET['binary']);

pg_query($db, "INSERT INTO tbl (name,image)
VALUES('{$name}', '{$image}')");

 28

Escaping Shortfall
 When un-quoted integers are passed to SQL

queries, escaping functions won’t save you,
since there are no special chars to escape.

http://example.com/db.php?id=0;DELETE%20FROM%20users
<?php
$id = sqlite_escape_string($_GET['id']);
// $id is still 0;DELETE FROM users

sqlite_query($db,

"SELECT * FROM users WHERE id={$id}");
// Bye Bye user data...
?>

 29

Prepared Statements
 Prepared statements are a mechanism to secure

and optimize execution of repeated queries.
 Works by making SQL “compile” the query and then

substitute in the changing values for each execution.
 Increased performance, 1 compile vs 1 per query.
 Better security, data is “type set” will never be

evaluated as separate query.
 Supported by most database systems.
 MySQL users will need to use version 4.1 or higher.
 SQLite extension does not support this either.

 30

Prepared Statements
<?php
$data = "Here is some text to index";

pg_query($db, "PREPARE my_stmt (text) AS
INSERT INTO search_idx (word) VALUES($1)");

foreach (explode(" ", $data) as $word) {
 // no is escaping needed
 pg_query($db, "EXECUTE my_stmt({$word})");
}

// de-allocte the prepared statement
pg_query($sb, "DEALLOCATE my_stmt");
?>

 Unless explicitly removed, prepared statements “stay
alive” between persistent connections.

 31

Error Reporting
 By default PHP will print all errors to

screen, startling your users and in some
cases disclosing privileged information.
 File paths.
 Un-initialized variables.
 Sensitive function arguments such as

passwords.
 At the same time, disabling error reporting

would make bug tracking near impossible.

 32

Solution?
 This problem can be solved by disabling

displaying of error messages to screen
ini_set(“display_errors”, FALSE);

 And enabling logging of errors
ini_set(“log_errors”, TRUE);

 to a file
ini_set(“error_log”, “/var/log/php.log”);

 or to system central error tracking facility
ini_set(“error_log”, “syslog”);

 33

File Security
 Many PHP applications often require various

utility and configuration files to operate.

 Because those files are used within the
application, they end up being world-readable.

 This means that if those files are in web
directories, users could download & view their
contents.

 34

External (web) Access
 Do not place files in web root that do not have to

be there.
 If nothing is being output by the file, give it a

.php extension.
 Use .htaccess to block access to files/directories

<Files ~ "\.tpl$">
Order allow,deny
Deny from all
</Files>

 35

Securing Configuration Files
 Configuration scripts, usually contain

sensitive data that should be kept private.

 Just denying web access, still leaves is
readable to all users on the system.
 Ideally configuration files would only be

readable by the owner.

 36

Solution #1
 If the configuration file only stores database

connection settings, you can set them via ini
directives that will then be loaded by httpd.conf via
Include directive.

mysql.cnf

mysql.default_host=localhost
mysql.default_user=forum
mysql.default_password=secret

httpd.conf

<VirtualHost 1.2.3.4>
Include “/site_12/mysql.cnf”
</VirtualHost>

 Apache parses configuration files as “root”, so your SQL
settings file can have restricted permissions (0600) and
still work.

 37

Solution #2
 For all other settings, Apache environment

variables can be used to “hide” data.
misc_config.cnf

SetEnv NNTP_LOGIN "login"
SetEnv NNTP_PASS "passwd"
SetEnv NNTP_SERVER "1.2.3.4”

httpd.conf

<VirtualHost 1.2.3.4>
Include “misc_config.cnf”
</VirtualHost>

echo $_SERVER[‘NNTP_LOGIN’]; // login
echo $_SERVER[‘NNTP_PASS’]; // passwd
echo $_SERVER[‘NNTP_SERVER’]; // 1.2.3.4

 38

Session Security
 Sessions are a common tool for user

tracking across a web site.

 For the duration of a visit, the session is
effectively the user’s identity.

 If an active session can be obtained by 3rd
party, it can assume the identify of the
user who’s session was compromised.

 39

Securing Session ID
 To prevent session id theft, the id can be altered

on every request, invalidating old values.
<?php
session_start();
if (!empty($_SESSION)) { // not a new session
 session_regenerate_id(TRUE); // make new session id
}
?>
 Because the session changes on every request, the

“back” button in a browser will no longer work, as it will
make a request with the old session id.

 40

Session Validation
 Another session security technique is to

compare the browser signature headers.
session_start();
$chk = @md5(
 $_SERVER['HTTP_ACCEPT_CHARSET'] .
 $_SERVER['HTTP_ACCEPT_ENCODING'] .
 $_SERVER['HTTP_ACCEPT_LANGUAGE'] .
 $_SERVER['HTTP_USER_AGENT']);

if (empty($_SESSION))
 $_SESSION['key'] = $chk;
else if ($_SESSION['key'] != $chk)
 session_destroy();

 41

Safer Session Storage
 By default PHP sessions are stored as files inside

the common /tmp directory.
 This often means any user on the system could see

active sessions and “acquire” them or even modify
their content.

 Solutions?
 Separate session storage directory via session.save_path
 Database storage mechanism, mysql, pgsql, oci.
 Shared memory “mm” session storage.
 Custom session handler allowing data storage anywhere.

 42

Shared Hosting
 Most PHP applications run in shared

environments where all users “share” the same
web server instances.

 This means that all files that are involved in
serving content must be accessible to the web
server (world readable).

 Consequently it means that any user could read
the content of files of all other users.

 43

The PHP Solution
 PHP’s solution to this problem are 2 INI

directives.
 open_basedir – limits file access to one or

more specified directories.
 Relatively Efficient.
 Uncomplicated.

 safe_mode – limits file access based on uid/gid
of running script and file to be accessed.
 Slow and complex approach.
 Can be bypassed with little effort.

 44

Security Through Obscurity
 While by itself is not a good approach to

security, as an addition to existing measures,
obscurity can be a powerful tool.

 Disable PHP identification header
expose_php=off

 Disable Apache identification header
ServerSignature=off

 Avoid obvious names for restricted control panels.

 45

<?php include “/book/plug.inc”; ?>

 46

Questions Resources
 http://ilia.ws/

(These Slides)
 http://www.modsecurity.org/

(mod_security Apache module)
 http://www.hardened-php.net/

(PHP Security Patches)
 http://www.xssoops.com/

(Security Scanner)

http://ilia.ws/
http://www.modsecurity.org/
http://www.hardened-php.net/
http://www.xssoops.com/

