
Accelerating PHP ApplicationsAccelerating PHP Applications

Ilia Alshanetsky
ilia@ilia.ws

O’Reilly Open Source Convention
August 3rd, 2005

Bytecode/Opcode Caches

 This cycle happens for
every include file, not
just for the "main" script.

 Compilation can easily
consume more time than
execution.

Opcode Caches

Benefits:
 Each PHP script is compiled only
once for each revision.

 Reduced File IO thanks to opcodes
being read from memory rather then
being parsed from disk.

 Since compilation is one time
event, generated opcodes can
optimised for faster execution.

Opcode Caches: Implementations

• APC (Alternative PHP Cache)
– Open Source
– Works with PHP 5.0+
– Easy to install (pecl install apc)
– Being actively maintained

• eAccelerator (Turck MMCache)
– Open Source
– Kinda/Sorta/Maybe works with PHP 5.0
– VERY FAST (fastest cache for 4.X)

• Zend Performance Suit
– On par performance with APC
– Includes other acceleration tools (content caching)

Compiler Optimisations

For absolute maximum performance it may be a good idea to
ensure that all software is compiled to the take maximum
advantage of the available hardware.

Enable all compiler optimizations with -O3
Make the compiler tune the code to your CPU via -march -mcpu
Try to make the compiler use CPU specific features -msse -mmmx
-mfpmath=sse

export CFLAGS="-O3 -msse -mmmx -march=pentium3 \
-mcpu=pentium3 -funroll-loops -mfpmath=sse"

Apache/PHP Integration

For maximum performance compile PHP statically into Apache
(up to 30% speed increase). Or use PHP 4.3.11+ where --prefer-
non-pic is default.

How to compile PHP statically into Apache

PHP
./configure --with-apache=/path/to/apache_source

Apache
./configure --activate-module=src/modules/php4/libphp4.a

Web Server: File IO

 Keep DirectoryIndex file list as short as possible.
 Whenever possible disable .htaccess via AllowOverride none.
 Use Options FollowSymLinks to simplify file access process
in Apache.

 If logs are unnecessary disable them.
 If logging is a must, log everything to 1 file and break it up
during analysis stage.

Bandwidth Optimizations

Less output is good because…

 Saves server bandwidth (saves $$ too).
 Reduces server resource usage (CPU/Memory/Disk)
 Pages load faster for clients.
 Reduces network IO high traffic sites, where it is the

primary bottleneck in most cases.

Content Compression

 Most browser support retrieval of compressed pages
decompressing them before rendering.

 Compressed pages are on average are 7-10 times smaller,
however compression can take 3%-5% of CPU.

Implementations:
 Apache 1 (mod_gzip)
 Apache 2 (mod_deflate)
 PHP

 php.ini (zlib.output_compression=1)
 script (ob_start(“ob_gzhandler”))

Tuning PHP Configuration

 register_globals = Off **
 magic_quotes_gpc = Off
 expose_php = Off
 register_argc_argv = Off
 always_populate_raw_post_data = Off **
 session.use_trans_sid = Off **
 session.auto_start = Off **
 session.gc_divisor = 1000 or 10000
 output_buffering = 4096

** Off by default

Tuning PHP File Access

Whenever opening files or including scripts into the main
script try to specify a full path or at least an easily
resolvable partial path.

Bad Approach:
<?php
include "file.php";
?>

Performance Friendly Approach:
<?php
include "/path/to/file.php";
// or
include "./file.php";
?>

Regular Expressions

While very useful tool for string manipulation, regular
expression leave much to be desired when it comes to
performance.

<?php
// Slow
if (preg_match("!^foo_!i", "FoO_")) { }
// Much faster
if (!strncasecmp("foo_", "FoO_", 4)) { }

// slow
if (preg_match("![a8f9]!", "sometext")) { }
// Faster
if (strpbrk("a8f9", "sometext")) { }
?>

Reference Tricks

References can be a valuable tool to simplify and accelerate
access to complex data types as well as a memory saving
tool.

<?php
$a['b']['c'] = array();
// slow 2 extra hash lookups
per access
for($i = 0; $i < 5; $i++)
 $a['b']['c'][$i] = $i;
// much faster reference
based approach
$ref =& $a['b']['c'];
for($i = 0; $i < 5; $i++)
 $ref[$i] = $i;
?>

<?php
$a = "abc";
// memory intensive
solution
function a($str) {
 return $str . "d";
}
$a = a($a);
// more effecient approach
function b(&$str) {
 $str .= "d";
}
b($a);
?>

What Is Caching?

 Caching is the recognition and exploitation
of the fact that most "dynamic" data does

not change every time you request it.

Pros and Cons of Caching

 Pros:
– Significant Speed Increases
– Reduction in consumption of some resources

 Cons:
– Increase in Architectural Complexity
– Potential for Stale or Inconsistent Data

On-Demand Caching

Set up a 404 Set up a 404
error handler error handler
in .htaccess:in .htaccess:

RewriteEngine on
RewriteRule /.*\.[^h][^t][^m][^l]$ /$1.html
ErrorDocument 404 /index.php
DirectoryIndex index.php

<?php
if (!empty($_SERVER['REDIRECT_URL'])) {
 // This is the requested page that caused the error
 $current_page = substr($_SERVER['REDIRECT_URL'],

strlen(WEBBASE));
}
/* content generation */
if (!FORCE_DYNAMIC) {
 echo $contents = ob_get_clean();
 file_put_contents($lang."/".$current_page.".html",

$contents);
}?>

SQL & Performance

Most large applications will end up using
databases for information storage.

Improper use of this resource can lead to
significant and continually increasing

performance loss.

Check Your Queries

Most databases offer mechanisms to analyze query execution
and determine if it’s running in an optimal manner.

EXPLAIN select * from mm_users where login LIKE '%ilia%';
+----------+------+---------------+------+---------+------+-------+------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+----------+------+---------------+------+---------+------+-------+------------+
| mm_users | ALL | NULL | NULL | NULL | NULL | 27506 | where used |
+----------+------+---------------+------+---------+------+-------+------------+

EXPLAIN select * from mm_users where login LIKE 'ilia%';
+----------+-------+---------------+-------+---------+------+------+------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+----------+-------+---------------+-------+---------+------+------+------------+
| mm_users | range | login | login | 50 | NULL | 2 | where used |
+----------+-------+---------------+-------+---------+------+------+------------+

SLOWSLOW

FASTFAST

Questions

