
Introduction to PDO
(PHP Data Objects Layer)

Ilia Alshanetsky

1

What is PDO

Common interface to any number of database
systems.

Written in C, so you know it’s FAST

Designed to make use of all the PHP 5.1
features to simplify usage.

2

Why is it needed?
Current state of affairs:

Many native database extensions that are
similar but do not provide the same
interface.

In most cases, very old code that does not
even scratch the surface of what PHP can
offer.

In many instances does not account for all
the capabilities offered by the database.

Ex. SQLite, MySQL extensions

3

Database Support
At this time PDO offers the following drivers:

MySQL 3,4,5 (depends on client libs)
PostgreSQL
SQLite 2 & 3
ODBC
Informix
Oracle
Firebird
FreeTDS/Sybase/MSSQL

4

Installing PDO
PDO is divided into two components

CORE (provides the interface)

DRIVERS (access to particular database)!

Ex. pdo_mysql

The CORE is enabled by default, drivers with
the exception of pdo_sqlite are not.

5

Actual Install Steps
PECL Way

pecl install pdo_[driver_name]

Update php.ini and add extension=pdo_
[driver_name].so (or .dll on win32)

Built into PHP

./configure –with-pdo-[driver_name]

For Win32 dlls for each driver are available.

6

Using PDO: Connecting
As is the case with all database interfaces,
the 1st step involves establishing a
connection.

// MySQL connection
new PDO(‘mysql:host=localhost;dbname=testdb’,
$login, $passwd);

// PostgreSQL
new PDO(‘pgsql:host=localhost port=5432
dbname=testdb user=john password=mypass’);

// SQLite
new PDO(‘sqlite:/path/to/database_file’);

7

Connection Failure Handling

As is the case with most native PHP objects,
instantiation failure lead to an exception
being thrown.

try {
 $db = new PDO(…);
} catch (PDOException $e) {
 echo $e->getMessage();
}

8

Persistent Connections
Connecting to complex databases like Oracle
is a slow process, it would be nice to re-use
a previously opened connection.

$opt = array(PDO::ATTR_PERSISTENT => TRUE);
try {
 $db = new PDO(“dsn”, $l, $p, $opt);
} catch (PDOException $e) {
 echo $e->getMessage();
}

9

DSN INI Tricks
The DSN string can be an INI setting and
you can “name” as many DSNs are you like.

ini_set(“pdo.dsn.ilia”, “sqlite::memory”);
try {
 $db = new PDO(“ilia”);
} catch (PDOException $e) {
 echo $e->getMessage();
}

10

Let’s Run Some Queries
Query execution in PDO can be done in two
ways

Prepared Statements (recommended for
speed & security)

Direct Execution

11

Direct Query Execution
Queries that modify information need to be
run via exec() method.

The return value is the number of rows
affected by the operation or FALSE on error.

$db = new PDO(“DSN”);

$db->exec(“INSERT INTO foo (id)
VALUES(‘bar’)”);

$db->exec(“UPDATE foo SET id=‘bar’”);

12

Direct Query Execution
Cont.

In some cases “change” queries may not
affect any rows and will return 0, so type-
sensitive compare is essential in avoiding
false positives!

$qry = “UPDATE foo SET id=‘bar’”;
$res = $db->exec($qry) or die(); // Wrong

if (!$res) // Wrong

if ($res !== FALSE) // Correct

13

Error Info Retrieval
PDO Provides 2 methods of getting error
information:

errorCode() – SQLSTATE! error code
Ex. 42000 == Syntax Error

errorInfo() – Detailed error information
Ex. array(
[0] => 42000,

[1] => 1064

[2] => Syntax Error

)

14

Better Error Handling
It stands to reason that being an OO
extension PDO would allow error handling via
Exceptions.

Now any query failure will throw an
Exception.

$db->setAttribute(
 PDO::ATTR_ERRMODE,
 PDO::ERRMODE_EXCEPTION
);

15

Back to Query Execution
When executing queries that retrieve
information the query() method needs to be
used.

On error FALSE is returned

$res = $db->query(“SELECT * FROM foo”);
// $res == PDOStatement Object

16

Fetch Query Results
Perhaps one of the biggest features of
PDO is its flexibility when it comes to how
data is to be fetched.

Array (Numeric or Associated Indexes)

Strings (for single column result sets)
Objects

Callback function
Lazy fetching

Iterators
And there is more!!!!

17

Array Fetching
$res = $db->query(“SELECT * FROM foo”);
while ($row = $res->fetch(PDO::FETCH_NUM)){
 // $row == array with numeric keys
}

$res = $db->query(“SELECT * FROM foo”);
while ($row = $res->fetch(PDO::FETCH_ASSOC)){
 // $row == array with associated (string) keys
}

$res = $db->query(“SELECT * FROM foo”);
while ($row = $res->fetch(PDO::FETCH_BOTH)){
 // $row == array with associated & numeric keys
}

18

Fetch as String
Many applications need to fetch data
contained within just a single column.

$u = $db->query(“SELECT id FROM users WHERE
login=‘login’ AND password=‘password’”);

// fetch(PDO::FETCH_COLUMN)
if ($u->fetchColumn()) { // returns a string
 // login OK
} else {
// authentication failure

}

19

Fetch as a Standard
Object

You can fetch a row as an instance of
stdClass where column name == property
name.

$res = $db->query(“SELECT * FROM foo”);

while ($obj = $res->fetch(PDO::FETCH_OBJ)) {
 // $obj == instance of stdClass
}

20

Fetch Into a Class
PDO allows the result to be fetched into a
class type of your choice.

$res = $db->query(“SELECT * FROM foo”);
$res->setFetchMode(
 PDO::FETCH_CLASS,
 “className”,
 array(‘optional’=‘Constructor Params’)
);
while ($obj = $res->fetch()) {
 // $obj == instance of className
}

21

Fetch Into a Class Cont.
PDO allows the query result to be used to
determine the destination class.

$res = $db->query(“SELECT * FROM foo”);
$res->setFetchMode(
 PDO::FETCH_CLASS |
 PDO::FETCH_CLASSTYPE
);
while ($obj = $res->fetch()) {
 // $obj == instance of class who’s name is
 // found in the value of the 1st column
}

22

Fetch Into an Object
PDO even allows retrieval of data into an
existing object.

$u = new userObject;

$res = $db->query(“SELECT * FROM users”);
$res->setFetchMode(PDO::FETCH_INTO, $u);

while ($res->fetch()) {
 // will re-populate $u with row values
}

23

Result Iteration
PDOStatement implements Iterator interface,
which allows for a method-less result
iteration.

$res = $db->query(
 “SELECT * FROM users”,
 PDO::FETCH_ASSOC
);
foreach ($res as $row) {
 // $row == associated array
// representing the row’s values.

}

24

Lazy Fetching
Lazy fetches returns a result in a form
object, but holds of populating properties
until they are actually used.

$res = $db->query(
 “SELECT * FROM users”, PDO::FETCH_LAZY
);
foreach ($res as $row) {
 echo $row[‘name’]; // only fetch name column
}

25

fetchAll()
The fetchAll() allows retrieval of all results
from a query right away. (handy for
templates)

Can be quite memory intensive for large
results sets!

$qry = “SELECT * FROM users”;
$res = $db->query($qry)->fetchAll(
 PDO::FETCH_ASSOC
);
// $res == array of all result rows, where each row
// is an associated array.

26

Callback Function
PDO also provides a fetch mode where each
result is processed via a callback function.

function draw_message($subject,$email) { … }

$res = $db->query(“SELECT * FROM msg”);

$res->fetchAll(
 PDO::FETCH_FUNC,
 “draw_message”
);

27

Direct Query Problems

Query needs to be interpreted on each
execution can be quite waste for frequently
repeated queries.

Security issues, un-escaped user input can
contain special elements leading to SQL
injection.

28

Escaping in PDO

Escaping of special characters in PDO is
handled via the quote() method.

$qry = “SELECT * FROM users WHERE
 login=“.$db->quote($_POST[‘login’]).”
 AND
 passwd=“.$db->quote($_POST[‘pass’]);

29

Prepared Statements
Compile once, execute as many times as you
want.

Clear separation between structure and
input, which prevents SQL injection.

Often faster then query()/exec() even
for single runs.

30

Prepared Statements in
Action

$stmt = $db->prepare(
 “SELECT * FROM users WHERE id=?”
);

$stmt->execute(array($_GET[‘id’]));

$stmt->fetch(PDO::FETCH_ASSOC);

31

Bound Parameters
Prepared statements parameters can be
given names and bound to variables.

$stmt = $db->prepare(
“INSERT INTO users VALUES(:name,:pass,:mail)”);

foreach (array(‘name’,’pass’,’mail’) as $v)
 { $stmt->bindParam(‘:’.$v,$$v); }

$fp = fopen(“./users.csv”, “r”);
while (list($name,$pass,$mail) = fgetcsv($fp,4096))
{
 $stmt->execute();
}

32

Bound Result Columns
Result columns can be bound to variables as
well.

$qry = “SELECT :type, :data FROM images LIMIT 1”;
$stmt = $db->prepare($qry);

$fp = fopen(tempname(“/tmp”, “LOB”), “w”);
$stmt->bindColumn(‘:type’,$type);
$stmt->bindColumn(‘:type’,$fp, PDO::PARAM_LOB);
$stmt->execute(PDO::FETCH_BOUND);

header(“Content-Type: “.$type);
fflush($fp);
fseek($fp, 0, SEEK_SET);
fpassthru($fp);
fclose($fp);

33

Partial Data Retrieval
In some instances you only want part of the
data on the cursor. To properly end the
cursor use the closeCursor() method.

$res = $db->query(“SELECT * FROM users”);
foreach ($res as $v) {
 if ($res[‘name’] == ‘end’) {
 $res->closeCursor();
 break;
 }
}

34

Transactions
Nearly all PDO drivers talk with
transactional DBs, so PDO provides handy
methods for this purpose.

$db->beginTransaction();
if ($db->exec($qry) === FALSE) {
 $db->rollback();
}
$db->commit();

35

Extending PDO
class DB extends PDO

{

function query($qry, $mode=NULL){

$res = parent::query($qry, $mode);

 if (!$res) {

var_dump($qry, $this->errorInfo());

return null;

} else {

return $res;

}

}

}

36

Questions

37

