
Securing PHP
Applications

By: Ilia Alshanetsky

 2

What is Security?
 Security is a measurement, not a characteristic.

 It’s is also an growing problem that requires an
continually evolving solution.
 A good measure of secure application is it’s ability to

predict and prevent future security problems, before
someone devises an exploit.

 As far as application design goes, security must
be considered at all times; initial spec,
implementation, testing and even maintenance.

 3

PHP & Security
 PHP keeps on growing as a language,

making headway into enterprise and
corporate markets.

 Consequently PHP applications often end
up working with sensitive data.
 Unauthorized access to this data is unacceptable.
 To prevent problems a secure design is needed.

 4

Accessing Input Data
 As of PHP 4.1, there are a series of super-

globals that offer very simple access to the input
data.
 $_GET – data from get requests.
 $_POST – post request data.
 $_COOKIE – cookie information.
 $_FILES – uploaded file data.
 $_SERVER – server data
 $_ENV – environment variables
 $_REQUEST – combination of GET/POST/COOKIE

 5

Register Globals
 Arguably the most common source of

vulnerabilities in PHP applications.
 Any input parameters are translated to

variables.
 ?foo=bar >> $foo = “bar”;

 No way to determine the input source.
 Prioritized sources like cookies can overwrite GET

values.
 Un-initialized variables can be “injected” via

user inputs.

 6

Register Globals
if (authenticated_user()) {

$authorized = true;
}
if ($authorized) {

include '/highly/sensitive/data.php';
}

 Because $authorized is left un-initialized if
user authentication fails, an attacker could
access privileged data by simply passing the
value via GET.

http://example.com/script.php?authorized=1

 7

Solutions To Register Globals
 Disable register_globals in PHP.ini.

 Already done by default as of PHP 4.2.0

 Code with error_reporting set to E_ALL.
 Allows you to see warnings about the use of un-

initialized variables.

 Type sensitive validation conditions.
 Because input is always a string, type sensitive

compare to a Boolean or an integer will always fail.
if ($authorized === TRUE) {

 8

Hidden Register Globals Problems

script.php?var[]=1&var[]=2

The link above will allow the attacker to inject
two values into the $var array. Worse yet PHP
provides no tools to detect such injections.

$var[] = “123”;
foreach ($var as $entry) {

make_admin($entry);
}

 9

$_REQUEST
 The $_REQUEST super-global merges data from

different input methods, like
register_globals it is vulnerable to value
collisions.

PHP.ini: variables_order = GPCS

echo $_GET['id']; // 1
echo $_COOKIE['id']; // 2
echo $_REQUEST['id']; // 2

 10

$_SERVER
 Even though the $_SERVER super-global is

populated based on data supplied by the web-
server it should not be trusted.
 User may inject data via headers

Host: <script> ...
 Some parameters contain data based on user input

REQUEST_URI, PATH_INFO, QUERY_STRING
 Can be fakes

Spoofed IP address via the use of anonymous
proxies.

 11

Numeric Value Validation
 All data passed to PHP (GET/POST/COOKIE) ends up

being a string. Using strings where integers are needed
is not only slow but also dangerous.

// integer validation
if (!empty($_GET['id'])) {
 $id = (int) $_GET['id'];
} else
 $id = 0;
// floating point number validation
if (!empty($_GET['price'])) {
 $price = (float) $_GET['price'];
} else
 $price = 0;

 Casting is a simple
and very efficient
way to ensure
variables do in fact
contain numeric
values.

 12

Validating Strings
 PHP comes with a ctype, extension that offers a very

quick mechanism for validating string content.

if (!ctype_alnum($_GET['login'])) {
 echo "Only A-Za-z0-9 are allowed.";
}
if (!ctype_alpha($_GET['captcha'])) {
 echo "Only A-Za-z are allowed.";
}
if (!ctype_xdigit($_GET['color'])) {
 echo "Only hexadecimal values are allowed";
}

 13

Path Validation
 Values passed to PHP applications are often

used to specify what file to open. This too needs
to be validated to prevent arbitrary file access.

http://example.com/script.php?path=../../etc/passwd

<?php
$fp = fopen(“/home/dir/{$_GET[‘path’]}”, “r”);
?>

 14

Path Validation
 PHP includes a basename() function that will process a

path and remove everything other then the last
component of the path, usually a file name.

<?php
$_GET[‘path’] = basename($_GET[‘path’]);

// only open a file if it exists.
if (file_exists(“/home/dir/{$_GET[‘path’]}”)) {

$fp = fopen(“/home/dir/{$_GET[‘path’]}”, “r”);
}
?>

 15

Better Path Validation
 An even better solution would hide file names

from the user all together and work with a white-
list of acceptable values.

// make white-list of templates
$tmpl = array();
foreach(glob("templates/*.tmpl") as $v) {
 $tmpl[md5($v)] = $v;
}
if (isset($tmpl[$_GET['path']]))
 $fp = fopen($tmpl[$_GET['path']], "r");

http://example.com/script.php?path=57fb06d7...

 16

magic_quotes_gpc
 PHP tries to protect you from attacks, by

automatically escaping all special characters
inside user input. (‘, “, \, \0 (NULL))
 Slows down input processing.

 We can do better using casting for integers.
 Requires 2x memory for each input element.

 May not always be available.
 Could be disabled in PHP configuration.

 Generic solution.
 Other characters may require escaping.

 17

Magic Quotes Normalization
if (get_magic_quotes_gpc()) { // check magic_quotes_gpc state
 function strip_quotes(&$var) {
 if (is_array($var)
 array_walk($var, 'strip_quotes');
 else
 $var = stripslashes($var);
 }

 // Handle GPC
 foreach (array('GET','POST','COOKIE') as $v)
 if (!empty(${"_".$v}))
 array_walk(${"_".$v}, 'strip_quotes');

// Original file names may contain escaped data as well
 if (!empty($_FILES))
 foreach ($_FILES as $k => $v) {
 $_FILES[$k]['name'] = stripslashes($v['name']);
}

 18

Recursive Functions == Crash
 While the code on the previous slide

works, it can be easily exploited, due to its
reliance on recursive functions!

<?php
$qry = str_repeat(“[]”, 1024);
$url = “http://site.com/script.php?a{$qry}=1”;
file_get_contents($url);

// run up in memory usage, followed by a prompt
crash

?>

 19

More Reliable & Faster Solution
if (get_magic_quotes_gpc()) {
 $in = array(&$_GET, &$_POST, &$_COOKIE);
 while (list($k,$v) = each($in)) {
 foreach ($v as $key => $val) {
 if (!is_array($val)) {
 $in[$k][$key] = stripslashes($val);
 continue;
 }
 $in[] =& $in[$k][$key];
 }
 }
 unset($in);
}

 20

XSS
 Cross Site Scripting (XSS) is a situation where

by attacker injects HTML code, which is then
displayed on the page without further validation.

 Can lead to embarrassment.
 Session take-over.
 Password theft.
 User tracking by 3rd parties.

 21

XSSOOPS Demo
 As you’ll see in a moment that XSS is

arguably the most common vulnerability
you’ll find on the web.

 Nearly every single web site in vulnerable
to XSS attacks.

 22

Preventing XSS
 Prevention of XSS is as simple as filtering

input data via one of the following:
 htmlspecialchars()

 Encodes ‘, “, <, >, &
 htmlentities()

 Convert anything that there is HTML entity for.
 strip_tags()

 Strips anything that resembles HTML tag.

 23

Preventing XSS
$str = strip_tags($_POST['message']);
// encode any foreign & special chars
$str = htmlentities($str);
// maintain new lines, by converting them to

echo nl2br($str);

// strip tags can be told to "keep" certain tags
$str = strip_tags($_POST['message'], '<p><i><u>');
$str = htmlentities($str);
echo nl2br($str);

 Tag allowances in strip_tags() are
dangerous, because attributes of those tags are
not being validated in any way.

 24

Tag Allowance Problems
<b style="font-size: 500px">
TAKE UP ENTIRE SCREEN

<u onError="alert(document.cookie);">
supposedly harmless text
</u>

<p style="background:
url(http://tracker.com/image.gif)">

Let's track users
</p>

 25

SQL Injection
 SQL injection is similar to XSS, in the fact

that not validated data is being used. But
in this case this data is passed to the
database.
 Arbitrary query execution

 Removal of data.
 Modification of existing values.
 Denial of service.
 Arbitrary data injection.

 26

SQL Escaping
 If database interface extension offers

dedicated escaping functions, USE THEM!
 MySQL

 mysql_escape_string()
 mysql_real_escape_string()

 PostgreSQL
 pg_escape_string()
 pg_escape_bytea()

 SQLite
 sqlite_escape_string()

 27

SQL Escaping in Practice
// undo magic_quotes_gpc to avoid double escaping
if (get_magic_quotes_gpc()) {
 $_GET['name'] = stripslashes($_GET['name'];
 $_GET['binary'] = stripslashes($_GET['binary']);
}

$name = pg_escape_string($_GET['name']);
$binary = pg_escape_bytea($_GET['binary']);

pg_query($db, "INSERT INTO tbl (name,image)
VALUES('{$name}', '{$image}')");

 28

Escaping Shortfall
 When un-quoted integers are passed to SQL

queries, escaping functions won’t save you,
since there are no special chars to escape.

http://example.com/db.php?id=0;DELETE%20FROM%20users
<?php
$id = sqlite_escape_string($_GET['id']);
// $id is still 0;DELETE FROM users

sqlite_query($db,

"SELECT * FROM users WHERE id={$id}");
// Bye Bye user data...
?>

 29

Prepared Statements
 Prepared statements are a mechanism to secure

and optimize execution of repeated queries.
 Works by making SQL “compile” the query and then

substitute in the changing values for each execution.
 Increased performance, 1 compile vs 1 per query.
 Better security, data is “type set” will never be

evaluated as separate query.
 Supported by most database systems.
 MySQL users will need to use version 4.1 or higher.
 SQLite extension does not support this either.

 30

Prepared Statements
<?php
$data = "Here is some text to index";

pg_query($db, "PREPARE my_stmt (text) AS
INSERT INTO search_idx (word) VALUES($1)");

foreach (explode(" ", $data) as $word) {
 // no is escaping needed
 pg_query($db, "EXECUTE my_stmt({$word})");
}

// de-allocte the prepared statement
pg_query($sb, "DEALLOCATE my_stmt");
?>

 Unless explicitly removed, prepared statements “stay
alive” between persistent connections.

 31

Error Reporting
 By default PHP will print all errors to

screen, startling your users and in some
cases disclosing privileged information.
 File paths.
 Un-initialized variables.
 Sensitive function arguments such as

passwords.
 At the same time, disabling error reporting

would make bug tracking near impossible.

 32

Solution?
 This problem can be solved by disabling

displaying of error messages to screen
ini_set(“display_errors”, FALSE);

 And enabling logging of errors
ini_set(“log_errors”, TRUE);

 to a file
ini_set(“error_log”, “/var/log/php.log”);

 or to system central error tracking facility
ini_set(“error_log”, “syslog”);

 33

File Security
 Many PHP applications often require various

utility and configuration files to operate.

 Because those files are used within the
application, they end up being world-readable.

 This means that if those files are in web
directories, users could download & view their
contents.

 34

External (web) Access
 Do not place files in web root that do not have to

be there.
 If nothing is being output by the file, give it a

.php extension.
 Use .htaccess to block access to files/directories

<Files ~ "\.tpl$">
Order allow,deny
Deny from all
</Files>

 35

Securing Configuration Files
 Configuration scripts, usually contain

sensitive data that should be kept private.

 Just denying web access, still leaves is
readable to all users on the system.
 Ideally configuration files would only be

readable by the owner.

 36

Solution #1
 If the configuration file only stores database

connection settings, you can set them via ini
directives that will then be loaded by httpd.conf via
Include directive.

mysql.cnf

mysql.default_host=localhost
mysql.default_user=forum
mysql.default_password=secret

httpd.conf

<VirtualHost 1.2.3.4>
Include “/site_12/mysql.cnf”
</VirtualHost>

 Apache parses configuration files as “root”, so your SQL
settings file can have restricted permissions (0600) and
still work.

 37

Solution #2
 For all other settings, Apache environment

variables can be used to “hide” data.
misc_config.cnf

SetEnv NNTP_LOGIN "login"
SetEnv NNTP_PASS "passwd"
SetEnv NNTP_SERVER "1.2.3.4”

httpd.conf

<VirtualHost 1.2.3.4>
Include “misc_config.cnf”
</VirtualHost>

echo $_SERVER[‘NNTP_LOGIN’]; // login
echo $_SERVER[‘NNTP_PASS’]; // passwd
echo $_SERVER[‘NNTP_SERVER’]; // 1.2.3.4

 38

Session Security
 Sessions are a common tool for user

tracking across a web site.

 For the duration of a visit, the session is
effectively the user’s identity.

 If an active session can be obtained by 3rd
party, it can assume the identify of the
user who’s session was compromised.

 39

Securing Session ID
 To prevent session id theft, the id can be altered

on every request, invalidating old values.
<?php
session_start();
if (!empty($_SESSION)) { // not a new session
 session_regenerate_id(TRUE); // make new session id
}
?>
 Because the session changes on every request, the

“back” button in a browser will no longer work, as it will
make a request with the old session id.

 40

Session Validation
 Another session security technique is to

compare the browser signature headers.
session_start();
$chk = @md5(
 $_SERVER['HTTP_ACCEPT_CHARSET'] .
 $_SERVER['HTTP_ACCEPT_ENCODING'] .
 $_SERVER['HTTP_ACCEPT_LANGUAGE'] .
 $_SERVER['HTTP_USER_AGENT']);

if (empty($_SESSION))
 $_SESSION['key'] = $chk;
else if ($_SESSION['key'] != $chk)
 session_destroy();

 41

Safer Session Storage
 By default PHP sessions are stored as files inside

the common /tmp directory.
 This often means any user on the system could see

active sessions and “acquire” them or even modify
their content.

 Solutions?
 Separate session storage directory via session.save_path
 Database storage mechanism, mysql, pgsql, oci.
 Shared memory “mm” session storage.
 Custom session handler allowing data storage anywhere.

 42

Shared Hosting
 Most PHP applications run in shared

environments where all users “share” the same
web server instances.

 This means that all files that are involved in
serving content must be accessible to the web
server (world readable).

 Consequently it means that any user could read
the content of files of all other users.

 43

The PHP Solution
 PHP’s solution to this problem are 2 INI

directives.
 open_basedir – limits file access to one or

more specified directories.
 Relatively Efficient.
 Uncomplicated.

 safe_mode – limits file access based on uid/gid
of running script and file to be accessed.
 Slow and complex approach.
 Can be bypassed with little effort.

 44

Security Through Obscurity
 While by itself is not a good approach to

security, as an addition to existing measures,
obscurity can be a powerful tool.

 Disable PHP identification header
expose_php=off

 Disable Apache identification header
ServerSignature=off

 Avoid obvious names for restricted control panels.

 45

<?php include “/book/plug.inc”; ?>

 46

Questions Resources
 http://ilia.ws/

(These Slides)
 http://www.modsecurity.org/

(mod_security Apache module)
 http://www.hardened-php.net/

(PHP Security Patches)
 http://www.xssoops.com/

(Security Scanner)

http://ilia.ws/
http://www.modsecurity.org/
http://www.hardened-php.net/
http://www.xssoops.com/

